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Modern FPGAs contain embedded DSP blocks, which can be configured as multipliers with more than one possible size.
FPGA-based designs using these multigranular embedded blocks become more challenging when high speed and reduced area
utilization are required. This paper proposes an efficient design methodology for implementing large size signed multipliers using
multigranular small embedded blocks. The proposed approach has been implemented and tested targeting Altera’s Stratix II FPGAs
with the aid of the Quartus II software tool. The implementations of the multipliers have been carried out for operands with sizes
ranging from 40 to 256 bits. Experimental results demonstrated that our design approach has outperformed the standard scheme
used by Quartus II tool in terms of speed and area. On average, the delay reduction is about 20.7% and the area saving, in terms of
ALUTs, is about 67.6%.
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1. Introduction

Nowadays modern FPGAs offer highly sophisticated
resources in the form of embedded blocks. These blocks vary
in complexity from small size multipliers to core processors.
Some of these blocks offer high degree of flexibility to cover
a wide range of applications. A typical example is the DSP
blocks in Altera’s FPGA. These blocks can be configured
to operate as 9 × 9-, 18 × 18-, or 36 × 36-bit multipliers
[1]. This flexibility of operating as multigranular embedded
blocks can be used to develop optimized realizations of large
size computing functions, such as large size multiplications.

Arithmetic computations are needed in a wide range
of applications and products. Some of these arithmetic
computations deal with large size operands. Typical appli-
cations include scientific computation, cryptography, and
data intensive systems. For instance, in climate modeling
and computational physics, high-precision floating point
processing is needed [2, 3], and these in turn require
large operand fixed point multipliers. Another application
which requires large size multiplications is processing-in-
memory system used in data intensive multimedia and video
applications [4].

There are various techniques presented in the literature
which deal with efficient realization of signed array multi-
plication through optimization of partial product generation
and partial product addition. The focus primarily is to reduce
the delay of the critical path, and sometimes to meet other
design objectives such as power dissipation and chip area [5–
7]. Most of these techniques are based on bit level, hence
suitable for ASIC or custom implementation. To map the
same algorithms on LUTs in FPGAs, the realization becomes
fairly inefficient, due to the interconnect delay and the
generic nature of the LUTs. With the availability of highly
optimized embedded multiplier blocks and incorporation
of microarithmetic operation within the LUTs, the strategy
for realization of multipliers is changed. For instance, an
attempt has been made to realize the multipliers by utilizing
3 : 2 compressors provided by the 6-LUTs on Altera’s FPGAs
[1, 8]. This technique has achieved satisfactory results,
and sometimes outperformed implementations based on
the embedded multipliers. Another scheme has proposed a
hybrid approach which utilizes embedded blocks and LUTs
[9]. Both of these two techniques are effective when dealing
with small size multipliers, however, large size multipliers
require the use of highly efficient structures and to minimize



www.manaraa.com

2 International Journal of Reconfigurable Computing

interconnect delays. This is only achievable through the
use of the embedded multipliers or DSP blocks, which are
available nowadays on myriad of FPGAs offered by vendors
such as Xilinx and Altera.

For large size multiplication using FPGA devices, known
algorithms normally segment the input operands based on
single size embedded blocks [10, 11]. For the case of Xilinx’
FPGAs for instance, a sign-extension-based approach [12]
is used for realizing the large size multiplications, which
employs 18×18-bit embedded signed multipliers as the basic
blocks. For Altera’s FPGAs, a standard approach is to use
single decomposition to implement the large size multipliers
[1], which is also based on the 18×18 embedded multipliers.
However, since the embedded DSP blocks in newer Altera’s
FPGA devices, such as Stratix II and later, can be configured
as 9× 9-bit, 18× 18-bit, and 36× 36-bit multipliers, then it
is possible to use multiple size embedded blocks as the basic
units to efficiently implement large size multipliers.

In our previous work, we developed an efficient design
approach for the implementation of large size unsigned
multipliers [13]. A more systematic approach was presented
in [14] with a set of design rules for addition of partial
products leading to more efficient realization. A structured
methodology was then developed to implement large size 2’s
complement multiplier based on Baugh-Wooley algorithm.
Taking advantage of the multigranularity of the embedded
DSP blocks, the authors proposed a scheme to design
highly efficient 256 × 256 2’s complement multiplier using
new approach for sign extension [15]. In this paper, we
present a design scheme for the general case to realize large
size signed multipliers based on multiple size embedded
blocks. We propose a divide-and-conquer-based strategy
with a multilevel decomposition procedure, followed by an
optimized approach for realizing the required additions of
the partial products to obtain the final result. We have also
dealt with special cases so that more improvements can be
achieved for a range of input operands from 40 to 284 bits.

The remainder of this paper is organized as follows.
Section 2 describes the architecture of large size multipliers
and a new sign-extension scheme used in this paper.
Section 3 presents the proposed design approach of large
size multigranular-block-based signed multipliers, and a
design example for a 256 × 256-bit multiplier is provided
in Section 4. In Section 5, experimental results and com-
parisons are presented. Finally, conclusions are given in
Section 6.

2. Implementation of Large Size Multipliers
Based on Single Size Embedded Blocks

In this section, we describe the decomposition method of
large size multiplications based on single size embedded
blocks, and a new sign-extension scheme to sum the
generated partial products.

2.1. Architecture of Single-Size-Embedded-Block-Based Large
Size Multipliers. To implement a large size multiplication
using single size embedded multipliers in FPGAs, the input

operands are decomposed based on the size of the embedded
blocks [14]. Assuming that the size of each 2’s complement
embedded block is n bits, each input operand is decomposed
into m segments with m = �k/(n− 1)�, where k is the size of
the large size multiplier, and �z� is the ceil function of z. The
expressions of the operands are represented as follows:

X = Xm−1 × 2(m−1)×(n−1) +
m−2∑

i=0

Xi ×
(
2(n−1))i,

Y = Ym−1 × 2(m−1)×(n−1) +
m−2∑

i=0

Yi ×
(
2(n−1))i.

(1)

In (1), the segment Xi or Yi is (n−1)-bit positive number for
0 ≤ i < (m− 1). For i = (m− 1), the segment Xm−1 or Ym−1

is (k − (m− 1)× (n− 1))-bit signed number, which is in the
range of 2 to n bits.

By multiplying the segmented inputs presented in (1), the
output of the multiplier is expressed as

Z = X × Y

=
[
Xm−1 × 2(m−1)×(n−1) +

m−2∑

i=0

Xi ×
(
2(n−1))i

]

×
[
Ym−1 × 2(m−1)×(n−1) +

m−2∑

i=0

Yi ×
(
2(n−1))i

]

= [(Xm−1 × Ym−1)× 22(m−1)×(n−1)]

+

[
Xm−1 × 2(m−1)×(n−1) ×

m−2∑

i=0

Yi ×
(
2(n−1))i

]

+

[
Ym−1 × 2(m−1)×(n−1) ×

m−2∑

i=0

Xi ×
(
2(n−1))i

]

+

[m−2∑

i=0

Xi ×
(
2(n−1))i ×

m−2∑

i=0

Yi ×
(
2(n−1))i

]
.

(2)

According to the optimized design approach of large size
multipliers proposed in [14], all partial products in (2) can
be organized as shown in Figure 1, where (n − 1) is denoted
as n′.

After all operands shown in Figure 1 are achieved,
multiple level additions are required for adding all these 2’s
complement operands. To reduce the area and the execution
delay, a set of optimization design rules can be followed,
which is proposed in [14].

2.2. New Sign-Extension Scheme for Large Size Signed Mul-
tipliers. To save area and reduce the execution delay, our
new sign-extension scheme proposed in [15] first organizes
the additions following the set of design rules, and then
extends the sign bits according to the resulting organized
additions. For example, the first level addition of the large
size multiplication is to add each pair of operands that
have the same size as shown in Figure 1. The sign extension
requires only one bit to take care of the carry of the
addition.

After the first level addition, all operands to be added
further are 2’s complement and have different sizes. Then,
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Figure 1: Organization of the partial products of large size signed multiplier.

at the second level and subsequent levels of addition, our
proposed new sign-extension scheme extends the sign bits of
the larger size operand, as shown in Figure 2, by one bits,
and sign extend of the smaller size operands to the same
position as that of the larger one. Moreover, to reduce the
size of adders, the least significant bits that do not overlap
with the other operand are concatenated to the output of the
adder.

3. Design of Large Size Signed Multipliers Using
Multigranular Embedded Blocks

In this section, we describe our proposed multilevel decom-
position approach for the implementation of large size signed
multiplications using multigranular embedded multipliers.

3.1. Decomposition of Large Size Multipliers Based on Multi-
granular Embedded Blocks. We assume that multigranularity
is based on three types of building blocks. They are of
different bit widths: n, t, and p, where

t = n

2
,

p = t

2
.

(3)

For Altera’s FPGAs, for instance, n = 36, t = 18, and p = 9.
To optimize the design of the large size multipliers, the

decomposition is first processed based on the largest size
building blocks. Figure 3 illustrates the decomposition of the
multiplication, where X and Y are the input operands of the
multiplier to be implemented.

Pi si si Operand i
Offset

2k − 1
Pj

Extension of s j s j Operand j

Adder size
0

Concatenation

Figure 2: Structure of the adders in the new sign-extension scheme.

Sign bit

X
λ1 n− 1 · · · n− 1 n− 1

Y λ1 n− 1 · · · n− 1 n− 1

m segments

Figure 3: Decomposition based on the largest size of embedded
blocks.

By multiplying the segmented inputs, three types of
multipliers are required to generate the partial products.
They are

(n− 1)× (n− 1)-bit unsigned multiplier,
(
λ1
)× (λ1

)
-bit signed multiplier,

(
λ1
)× (n− 1)-bit signed multiplier.

(4)

The first type of multiplication can be implemented
using n× n-bit embedded signed multiplier with the sign bit
forced to zero.

The second type of multiplication, (λ1)× (λ1)-bit signed
multiplier required only once, can be implemented using one
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of n × n, t × t or p × p-bit embedded signed multiplier
according to the value of λ1. If λ1 is less than or equal to
p bits, then a p × p-bit embedded multiplieris used; if λ1 is
greater than p but less than or equal to t bits, then a t × t-
bit embedded multiplieris required; otherwise, an n × n-bit
embedded multiplier is needed.

The last type of multiplication is (λ1)× (n−1)-bit signed
multiplier. To efficiently implement this kind of multiplier,
smaller size embedded blocks, such as t × t-bit embedded
multipliers, are utilized. There are two scenarios to be
considered. Equation (5) illustrates these two situations:

1 < λ1 ≤ [t − (m− 1)],

[t − (m− 1)] < λ1 ≤ n,
(5)

where n = 36 and t = 18. Table 1 categorizes multipliers
for bit sizes from 37 to 281 for these two situations with
segments m from 2 to 8.

In Range 1, smaller size embedded multipliers can be
used for the implementation based on double-level decom-
position. To do this, the size of the first level decomposition is
based on (n−2) bits instead of (n−1) bits since it needs to be
decomposed further as two subsegments. Figure 4 illustrates
the first level decomposition for the size in Range 1. For
example, a 120× 120-bit multiplier, which is one of the cases
in Range 1, can be decomposed into four segments of 18, 34,
34, and 34 bits.

The second level decomposition is to separate each 34-bit
operand as two 17 bits. Thus, the 18 × 34-bit multiplication
can be implemented using 18×18-bit embedded multipliers.

On the other hand, the cases in Range 2, double level
decomposition will not lead to optimized solution since the
size of the most significant segment, λ2 in this case, is more
than t bits. For example, for a 121 × 121-bit multiplier, if
the 121-bit operand first is decomposed as 19, 34, 34, and
34, the sizes of all operands in this multiplication are greater
than t bits, so the t × t-bit embedded multiplier cannot be
used. Therefore, only single-level decomposition is needed
and n × n-bit embedded multipliers are required. The block
size for this decomposition is equal to (n − 1) = 35 bits.
For this example, the 121-bit operand is decomposed into
4 segments of 16, 35, 35, and 35 bits.

3.2. Implementation of Large Size Multipliers Based on
Multigranular Embedded Multipliers. In this section, we will
describe the implementation approaches for the realization
of large size multipliers for the scenarios presented in the
Section 3.1.

3.2.1. Implementation of Large Size Multipliers Based on
Double Decomposition. Double decomposition is used for
the bit size located in Range 1. The first level decomposition
is to decompose each input operand, X or Y, into �k/(n −
2)� = m segments, where k is the size of the multiplication
to be implemented, m is the number of segments, and
n = 36 is the size of the largest embedded multiplier. After
the first level decomposition, the segmented input operands
are multiplied and the partial products are organized as
shown in Figure 1. The partial product Xm−1 × Ym−1 can

Sign bit

X
λ2 n− 2 · · · n− 2 n− 2

Y
λ2 n− 2 · · · n− 2 n− 2

m segments

Figure 4: First level decomposition for a large size multiplication in
Range 1.

51 33 17 0

×

YiH YiL

s Xm−1

Sign
extension s Xm−1

∗YiL

+
s Xm−1

∗YiH

Concatenation

Figure 5: 18 × 34-bit multiplication using 18 × 18-bit embedded
blocks.

be implemented by t × t-bit embedded multipliers if the
size of Xm−1 or Ym−1 is greater than p bits, or by p × p-bit
embedded multipliers if it is equal to or less than p bits.
The partial product Xi × Yj (i, j = 0, 1, . . . ,m − 2) with
the size of (n − 2) bits, and it can be implemented using the
n×n-bit embedded multipliers with the most two significant
bits forced to zeros. The last partial product, Xm−1 × Yj , or
Ym−1 × Xi (i, j = 0, 1, . . . ,m − 2), has (n − 2) bits in Xi or
Yj , and less than or equal to t bits in Xm−1 or Ym−1. Then,
a second level decomposition is performed. The (n − 2)-bit
operand is decomposed as two subsegments with (t − 1) bits
each. After the second level decomposition, the segmented
multiplication, (Xm−1 × Yj) or (Ym−1 × Xi), is implemented
using t × t embedded multipliers. Figure 5 presents an
example for carrying out this multiplication. This process
requires two t × t-bit embedded signed multipliers and one
adder. Sign-extension is performed before the addition. Also,
the concatenation operation is used for the last (t − 1) =
17 bits of the partial products to reduce the size of the adder.
To use signed embedded multipliers for unsigned numbers,
the sign bits of the embedded multipliers for the (t − 1)-bit
operands are forced to zeros.

Once all the segmented partial products are generated,
the required additions can be performed following the design
rules presented in [14].

3.2.2. Implementation of Large Size Multipliers Based on Single
Decomposition. In the case of Range 2, single decomposition
is performed since the most significant segment of the
input operands contains more than t bits. In this case, the
decomposition is based on (n− 1) bits, where n is the largest
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Table 1: Decomposition of input bit sizes for large size multipliers.

Segments
Range 1: double decomposition Range 2: single decomposition

{2 ≤ λ1 ≤ [t − (m− 1)]} + (m− 1)× (n− 1) {[(t + 1)− (m− 1)] ≤ λ1 ≤ n} + (m− 1)× (n− 1)

m = 2 37 to 52 53 to 71

m = 3 72 to 86 87 to 106

m = 4 107 to 120 121 to 141

m = 5 142 to 154 155 to 176

m = 6 177 to 188 189 to 211

m = 7 212 to 222 223 to 246

m = 8 247 to 256 257 to 281

Table 2: The ranges of input bit size with special cases for decompositions.

Range/segments Range 1 Special cases of Range 1 Range 2 Special cases of Range 2

[40 + 35× (m− 2)] to
[18 + 34× (m− 1)]

[19 + 34× (m− 1)] to
[21 + 34× (m− 1)]

[22 + 34× (m− 1)] to
[36 + 35× (m− 1)]

[37 + 35× (m− 1)] to
[39 + 35× (m− 1)]

m = 2 40 to 52 53 to 55 56 to71 72 to 74

m = 3 75 to 86 87 to 89 90 to 106 107 to 109

m = 4 110 to 120 121 to 123 124 to 141 142 to 144

m = 5 145 to 154 155 to 157 158 to 176 177 to 179

m = 6 180 to 188 189 to 191 192 to 211 212 to 214

m = 7 215 to 222 223 to 225 226 to 246 247 to 249

m = 8 250 to 256 257 to 259 260 to 281 282 to 284

33 17 0

×

B BH BL

A s AH AL

Sign
extension

Sign
extension

0 AL∗B

+

s AH∗BL
Ps

s AH∗BH

Figure 6: Generation of the partial product for the special case of
Range 1.

size of embedded blocks. After the decomposition, all partial
products can be organized in the same way as shown in
Figure 1 with n = 36. The optimized addition operations for
summing these partial products are performed also based on
the design rules summarized in [14].

3.3. Special Cases of the Implementation for the Large Size Mul-
tiplier. The special cases are referred to the multiplications
such that the most significant segment of each operand has
r + t or r + n bits, where r is in the range of 1 to 3 bits. For
these special cases, the realizations of the multiplications,
which involve these small size segments, are implemented
using (Look Up Tables) LUTs instead of using embedded
blocks. Based on our experimental analysis, for the cases with
r greater than 3, the use of LUTs will result in larger delay and

34 0

×

B B

A s AH AL

Sign
extension

0 AL∗B

+
s AH∗B

Ps

Figure 7: Gereration of the partial product for special cases of
Range 2.

area utilization. Table 2 lists the special cases of Range 1 and
Range 2. In the following, we will explain the algorithms for
the designs of the special cases. The focus of these algorithms
is to reduce the number of embedded blocks required in the
designs.

3.3.1. Design of Special Cases of Range 1. In this special
case, the most significant segment, Xm−1 or Ym−1 is a signed
number with a bit size of t+1 to t+3, and the other segments
are positive of size of (n−2). To explain the algorithm for this
special case, let’s assume that the signed segment, Xm−1 or
Ym−1, is referred to as the A operand, and the other positive
segment is referred to as the B operand. The A operand is
decomposed as AH and AL. AH has the most significant t
bits of A, and AL has the rest of the bits of A, which is 1
to 3 bits. The B operandis decomposed also to two segments
with (n−2)/2 = (t−1) bits each. The algorithm for the special
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Case when the size of AL is 1 bit
If AL = 0 then

PS = AH× BL× 21

Else
PS = AH× BL× 21 + B

End if
A × B = AH× BH× 2t + PS

Case when the size of AL is 2 bits
If AL = 00 then

PS = AH× BL× 22

Else if AL = 01 then
PS = AH× BL× 22 + B

Else if AL = 10 then
PS = AH× BL× 22 + B × 21

Else
PS = AH× BL× 22 + B × 21 + B

End if
A × B = AH× BH× 2(t+1) + Ps

Case when the size of AL is 3 bits
If AL = 000 then

PS = AH× BL× 23

Else if AL = 001 then
PS = AH× BL× 23 + B

Else if AL = 010 then
PS = AH× BL× 23 + B × 21

Else if AL = 011 then
PS = AH× BL× 23 + B × 21 + B

Else if AL = 100 then
PS = AH× BL× 23 + B × 22

Else if AL = 101 then
PS = AH× BL× 23 + B × 22 + B

Else if AL = 110 then
PS = AH× BL× 23 + B × 22 + B × 21

Else
PS = AH× BL× 23 + B × 22 + B × 21 + B

End if
A × B = AH× BH× 2(t+2) + Ps

Algorithm 1

cases of Range 1 is graphically illustrated in Figure 6 and the
pseudocode is given below and named as Algorithm 1. In
this case, two 18× 18-bit embedded multipliers are required
instead of one 36× 36-bit embedded block.

In addition, Algorithm 1 can be extended to the partial
product, Xm−1 × Ym−1. Since both operands, Xm−1 or Ym−1,
have t + 1, t + 2 or t + 3 bits, it can be decomposed as
two segments. One segment has the most significant t bits
and the other segment has the rest of the bits, 1, 2 or 3,
respectively. This multiplication is implemented by one t× t-
bit embedded multiplier with some additions rather than one
n× n-bit embedded multiplier.

3.3.2. Design of the Special Cases of Range 2. For these
cases, the size of the most significant segments of the input
operands, Xm−1 and Ym−1, is (n + 1), (n + 2), or (n + 3)
bits. These segmented operands are multiplied with the other
segments that have a size of (n− 1) bits.

Case when the size of AL is 1 bit
If AL = 0 then

PS = 0
Else

PS = B
End if
A × B = AH× B × 21 + PS

Case when the size of AL is 2 bits
If AL = 00 then

PS= 0
Else if AL = 01 then

PS = B
Else if AL = 10 then

PS = B × 21

Else
PS = B × 21 + B

End if
A × B = AH× B × 22 + Ps

Case when the size of AL is 3 bits
If AL = 000 then

PS = 0
Else if AL = 001 then

PS = B
Else if AL = 010 then

PS = B × 21

Else if AL = 011 then
PS = B × 21 + B

Else if AL = 100 then
PS = B × 22

Else if AL = 101 then
PS = B × 22 + B

Else if AL = 110 then
PS = B × 22 + B × 21

Else
PS = B × 22 + B × 21 + B

End if
A × B = AH× B × 23 + Ps

Algorithm 2

We also let A denotes Xm−1or Ym−1, and B is any other
positive number segmented with (n− 1) bits. The operand A
is decomposed as AH and AL. AH has the most significant n
bits of A, and AL has the rest, 1 to 3 bits. The multiplication
of these two operands is illustrated in Figure 7, and the
realization is based on the pseudocode given below and
named as Algorithm 2.

In the special cases of Range 2, the partial productXm−1×
Ym−1 can be implemented in a similar way as it is done for
Range 1. In this case, only one n×n-bit embedded multiplier
with some additions is required.

4. Design Example: A 256 × 256-bit
Multigranular Signed Multiplier

As a design example, this section summarizes the imple-
mentation of a 256 × 256-bit signed multiplier using
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Figure 8: The segmented partial products of a 256× 256-bit multiplier.
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Figure 9: Flow digram of the additions required for a 256× 256-bit multiplier.

multigranular embedded blocks with n = 36, t = 18, and
p = 9. This design example is described with the following
four steps.

Step 1 (First level decomposition). Since the size of the
operands is in Range 1, two levels of decomposition are
required. The first level decomposition is based on (n− 2) =
34 bits. In this case, each of the 256-bit input operands is
decomposed from the right- to left-hand side with 34 bits
each. Because of �256/34� = 8 and 256 − 7 × 34 = 18,
eight segments are required and the most significant segment
has 18 bits. Since all the segmented operands have more than
9 bits, the 9 × 9-bit embedded blocks cannot be used in this
case.

Step 2 (Generation of the segmented partial products).
After the first-level decomposition, these segmented input

operands are multiplied and the organization of all the
partial products is shown in Figure 8.

Step 3 (Second level decomposition). In Figure 8, two
types of basic multipliers are required. One is 34 × 34-bit
unsigned multipliers and the other is 18 × 34-bit signed
multipliers. The 34 × 34-bit unsigned multiplication is
implemented using 36 × 36-bit signed embedded multiplier
with the first two bits forced to zeros, and the 18 × 34-bit
multiplication has to be decomposed again.

At second level decomposition, each 34-bit operand is
split into 17 bits each. Then, the 18 × 34-bit multiplication is
implemented using the process shown in Figure 5. Also, the
sign bits of the embedded multipliers for the 17-bit operands
are forced to zeros.

In this implementation, one 18 × 18-bit, forty nine
34 × 34-bit and fourteen 18 × 34-bit multipliers are
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Figure 10: Comparison of the results.
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Figure 11: The Delay-ALUT product and the Delay-DSP element product.
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Figure 12: Result comparison for special cases.

required. Based on Altera’s FPGAs, the total number of
embedded blocks used (in terms of 9-input DSP ele-
ments) is equal to 49 × 8 + (14 × 2) × 2 + 1 × 2 = 450.
However, if there is no second level decomposition,
the 18 × 34-bit multiplication requires a 36 × 36-bit
embedded multiplier. Under this condition, the total
number of embedded 9-input DSP elements used is
equal to 49 × 8 + 14 × 8 + 1 × 2 = 506, an increase of
12.5%.

Step 4 (Summing the partial products). The last step is to
sum all partial products shown in Figure 8 to get the final
result of the large size multiplier. Using the rules proposed
in [14], the additions can be performed as shown in Figure 9
based on two-input operand adders.

5. Implementation Results

The multigranular signed multipliers were implemented
using Altera’s FPGAs. The synthesis tool used is Quartus

II version 7.2 targeting the device EP2S180F1508C3 from
the Stratix II family [1]. To test the effectiveness of our
proposed approach, 9-input DSP element is used as the unit
of computation. Results of our proposed design approach
are compared with the standard scheme adopted by the
Quartus synthesis tool [16], which uses primarily 18 × 18-
and 9 × 9-bit embedded multipliers as building blocks. All
the designs in this paper are registered at the inputs and
outputs. The size of input operands is ranged from 40 to
255 bits with an increase of 5 bits from one case to the next
one. The case of 256 × 256-bit multiplier, which has a range
of applications, is also assessed. Moreover, some special cases
are implemented to reduce the number of embedded blocks
based on the algorithms presented in Section 3.3.

The proposed approach and the traditional scheme are
compared based on the following metrics extracted from
the implementation summary and the timing analyzer sum-
mary: (1) the clock period, (2) the number of (Adaptive Look
Up Tables) ALUTs used, (3) the number of embedded blocks
in terms of 9-input DSP elements used. All these results are
presented in Figure 10. Then, the delay-ALUTs product and
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Table 3: Result of a 256× 256-bit multigranular signed multiplier.

Delay (ns) Number of ALUTs Number of DSP elements Delay-ALUT product Delay-DSP-element product

Standard 41.530 16050 449 666557 18647

Multigranular 32.487 4577 450 148693 14619

Saving (%) 21.775 71.483 −0.223 77.692 21.600

the delay-DSP-element product are computed based on the
implementation results and presented in Figure 11.

Compared to the results of the standard scheme, the
proposed multigranular multiplier method has resulted in
considerable improvements in terms of timing and area
saving. The performance has been improved by 20.7%
compared to the standard scheme. For the number of ALUTs
used, the multigranular approach consumes an average of
67.6% less area compared to the standard scheme. Although
our approach has outperformed the standard method,
however, there are roughly 25% cases where our approach
requires more number of 9-input DSP elements than that of
the standard scheme, as shown in Figure 10(c).

Moreover, the implementation results of the multipli-
cations can be improved using the algorithms of special
cases as explained earlier, which allow reducing the number
of embedded blocks. These results will be presented later.
Also, considering the product of the delay and the number
of ALUTs as well as the product of the delay and the
number of embedded blocks, a significant improvement has
been achieved as it can be noticed from Figure 11. The
average reductions of the delay-ALUT product and the delay-
DSP element product are 74.4% and 15.8%, respectively,
compared to the standard scheme.

For the case of 256× 256-bit multiplier, results are listed
in Table 3. Comparing to the standard scheme, the delay is
reduced by about 21.7% and the number of ALUTs saving
is up to 71.4%, however, the use of 9-input DSP elements
has been increased by one block. This is translated into
0.22% penalty. The delay-ALUT product and the delay- DSP-
element product for the multigranular approach have been
improved by 77.6% and 21.6%, respectively, compared to the
standard scheme.

For the special cases, Figure 12 graphically illustrates
the implementation results for six cases ranging from
3 to 7 segments. In this figure, the “proposed general”
refers to the design approach presented in Section 3.2. The
“proposed special” refers to the special cases, which are
implemented using the algorithms presented in Section 3.3.
From Figure 12, it is clear that the number of DSP elements
used in the special cases is reduced and now it is exactly the
same as that used in the standard approach. Although this
resulted in an increase in the number of ALUTs, however,
it is still significantly less than that used in the standard
approach.

6. Conclusions

The focus of this paper is to realize large size signed
multipliers using DSP blocks with multigranular embedded

signed multipliers in FPGAs. Multiple decompositions are
used to efficiently make use of the multigranularity offered
in modern FPGAs. The effectiveness of the proposed design
approach has been tested using various benchmarks, and
compared with a standard approach using commercial tool.
Although this tool has complete access to the features
available in the DSP blocks and in the 6-LUTs of the
target FPGA, however, using our methodology has always
outperformed the standard scheme.
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